
SOFTWARE REQUIREMENTS
SPECIFICATION

for

TIME TRACKING AND
MANAGEMENT SYSTEM

Version 1.2

Prepared by: Jean Jacques Avril

Master Student, Computer Science

Technische Hochschule Rosenheim

Module: Concepts of Programming Languages

January 5, 2025

1

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Intended Audience and Reading Suggestions . 4
1.3 Project Scope . 4

2 Requirements 5
2.1 Functional Requirements . 5
2.2 Non-functional Requirements . 6

3 Technical Specification 7
3.1 Overall Architecture . 7
3.2 Technology Stack . 7

3.2.1 Frontend . 7
3.2.2 Backend . 7
3.2.3 Database . 7

3.3 Key Specifications . 7
3.3.1 Frontend Design . 7
3.3.2 Backend Implementation . 8

3.4 Entities . 8
3.4.1 User . 8
3.4.2 TimeEntry . 8
3.4.3 Project . 8
3.4.4 Role and Permission . 8

4 System Design 9
4.1 Overview . 9
4.2 Architectural Design . 9
4.3 Module Design . 10

4.3.1 User Management Module . 10
4.3.2 Authentication Module . 10
4.3.3 Time Entry Module . 10
4.3.4 Project Management Module . 10
4.3.5 Role and Permission Module . 10

4.4 Data Flow . 10
4.5 Database Design . 11

4.5.1 User Table . 11
4.5.2 TimeEntry Table . 11
4.5.3 Project Table . 11
4.5.4 Role and Permission Tables . 11

5 Detailed Design for the Go Backend 12
5.1 Project Structure for DDD and Clean Architecture in Go . 12

5.1.1 Explanation of the Structure . 12
5.1.2 Implementation Highlights . 12

5.2 Best Practices and Principles . 12

6 Detailed Design for the Dart Backend 13
6.1 Project Structure for DDD and Clean Architecture in Dart . 13

6.1.1 Explanation of the Structure . 13
6.1.2 Implementation Highlights . 13

6.2 Best Practices and Principles . 13

7 API Endpoints 14
7.1 Overview . 14
7.2 API Endpoints . 14

7.2.1 1. Authentication and Authorization . 14
7.2.2 2. User Management . 14
7.2.3 3. Project Management . 15
7.2.4 4. Time Entry Management . 15
7.2.5 5. Client Management (Optional) . 16

2

7.2.6 6. Task Management (Optional) . 16
7.2.7 7. Reporting . 16
7.2.8 8. Notification Settings . 17

7.3 Security Considerations . 17
7.4 Error Handling . 17

3

1 Introduction

1.1 Purpose

The purpose of this Software Requirements Specification (SRS) document is to provide a detailed overview
of the requirements for the Time Tracking and Management System. This document outlines the system’s
functionality, design goals, and intended use to ensure a comprehensive understanding of its scope and potential.
The system aims to facilitate accurate tracking and calculation of work hours while maintaining flexibility for
future expansions. The backend will demonstrate the benefits of a functional programming approach, supporting
maintainability and extensibility.

1.2 Intended Audience and Reading Suggestions

This document is intended for various stakeholders who have an interest in the development and use of the
system:

• Project Stakeholders: For a thorough understanding of the system’s features and constraints.

• Developers: To understand the functional and non-functional requirements, allowing for seamless im-
plementation.

• Quality Assurance Teams: To ensure that testing aligns with the specified requirements.

• Future Contributors: To grasp the system’s architecture and contribute to its expansion effectively.

Readers are advised to first review the functional requirements section to understand the core system func-
tionality and then move to the non-functional requirements for insights into performance and security aspects.
Those involved in architecture and backend development should focus on the system architecture and technology
sections to appreciate how the functional programming style enhances the backend.

1.3 Project Scope

The Time Tracking and Management System is designed to provide an efficient, user-friendly platform for
tracking work hours, recording breaks, and generating reports. This software was conceptualized due to a
personal interest in self-hosting and experimenting with homelab setups. Existing open-source solutions did not
meet the specific needs for flexibility, modularity, and architectural robustness.

The initial scope of the project includes core functionalities such as user management, time tracking, project
assignments, and report generation. However, the software’s architecture is designed to support future modular
extensions. Potential future modules could include features like work desk planning, allowing users to plan and
allocate their work tasks in advance.

The backend of this system is built with a focus on functional programming principles, enabling cleaner,
more predictable code and easier scalability. This approach also ensures that additional functionalities can be
seamlessly integrated as the software evolves.

The combination of a robust, extendable architecture and a functional programming backend makes this
system a unique and effective solution for personal and professional time management needs.

4

2 Requirements

2.1 Functional Requirements

FA-1: User Registration

• Description: The user must be able to register in the system.

• Details:

– Input of username and password.

– Check for existing username.

– Return a confirmation message upon successful registration.

• Validations: Unique username, password must meet security requirements.

FA-2: User Login

• Description: The user can log into the system.

• Details:

– Input of username and password.

– Return an authentication token upon successful verification.

• Validations: Correct input of username and password.

FA-3: Password Recovery

• Description: The user can reset their password.

• Details:

– Request a recovery link via email.

– Set a new password.

• Validations: Valid email, new password must meet security requirements.

FA-4: User Profile Management

• Description: The user can manage their profile data.

• Details: Display and edit profile information.

• Validations: Unique email when modified.

FA-5: Automatic Time Tracking

• Description: Time tracking with start/stop buttons.

• Details: Store start and end times for calculating work duration.

• Validations: Cannot start tracking if already active.

FA-6: Manual Time Tracking

• Description: Manual entry of work times.

• Details: Input start and end times, including optional breaks.

FA-7: Break Times

• Description: Add break times during a work period.

• Details: Breaks are subtracted from total work time.

• Validations: Breaks must be within the start and end times.

5

FA-8: Project Assignment

• Description: Assign recorded times to projects.

• Details: Projects can be created and managed in the system.

• Validations: Valid project required for time entry.

FA-9: Task Description

• Description: Add task descriptions to time entries.

• Details: Input descriptions or select from templates.

FA-10: Daily and Weekly Reports

• Description: Generate reports of work times.

• Details: Includes total work time, break time, and overtime.

• Validations: Reports can only be generated for registered users.

FA-11: Export Function

• Description: Export reports as PDF or CSV.

• Details: Select projects and date ranges for export.

FA-12: Reminder Function

• Description: The system reminds the user to start or stop time tracking.

• Details: Configurable notifications in the user profile.

2.2 Non-functional Requirements

NFA-1: User Data Security

• Description: User data must be securely stored and transmitted.

• Details: Passwords stored as hashes, TLS for data transmission.

NFA-2: Performance

• Description: Response time should be under 200 ms.

NFA-3: Scalability

• Description: Support a large number of concurrent users.

NFA-4: Usability

• Description: The interface should be intuitive and responsive.

NFA-5: Data Integrity and Security

• Description: Ensure data integrity and restricted access.

• Details: Authentication and data encryption required.

NFA-6: Performance Optimization

• Description: Optimization through caching techniques.

6

3 Technical Specification

3.1 Overall Architecture

The ActaTempus Time Tracking and Management System is a full-stack web application with the
following main components:

• Frontend: Built with Next.js and React, utilizing HTTP for RESTful APIs and WebSockets for real-time
communication.

• Backend: Implemented in Go, with support for scalable service layers, data management, and business
logic.

• Databases: PostgreSQL serves as the primary relational data store for all persistent data.

• Communication Protocols: REST is the primary communication method, with WebSockets used for
real-time updates where needed.

3.2 Technology Stack

3.2.1 Frontend

• React/Next.js: Frameworks for building interactive and responsive user interfaces.

• RxJS: Functional reactive programming for state management and event streams.

• Axios: For making HTTP requests to backend APIs.

• WebSocket API: Native API for bi-directional communication between frontend and backend.

3.2.2 Backend

• Go Backend:

– ORM: Prisma Go and Dart adapter for PostgreSQL integration.

– Web Framework: gin-gonic (Go) and shelf (Dart) for handling HTTP requests.

– Authentication: JSON Web Tokens (JWT) for securing API endpoints.

3.2.3 Database

• PostgreSQL: A robust, open-source relational database for structured data storage.

3.3 Key Specifications

3.3.1 Frontend Design

The frontend is designed to provide an intuitive, responsive, and user-friendly interface.

Key Features

• Modular Components: Reusable React components for user input, dashboards, and notifications.

• Real-Time Updates: WebSocket integration ensures real-time synchronization between frontend and
backend.

• Responsive Design: Ensures compatibility with desktops, tablets, and mobile devices.

• Data Visualization: Utilizes charts and tables for presenting reports and time tracking summaries.

Security Considerations

• Secure Communication: All data exchanges are secured using TLS encryption.

• Authentication and Authorization: User sessions are secured via JWTs.

• Input Validation: Ensures data integrity before submission to the backend.

7

3.3.2 Backend Implementation

The backend handles business logic, data storage, and secure communication.

Components

• Service Layer: Implements the business logic and coordinates with repositories.

• Repository Layer: Abstracts data access logic for easy maintenance.

• DataSource Layer: Handles direct interaction with PostgreSQL via Prisma adapters.

Key Features

• Role-Based Access Control (RBAC): Restricts actions based on user roles and permissions.

• Scalable Architecture: Designed to handle growing user bases and data loads.

• Real-Time Updates: Implements WebSocket endpoints for real-time functionality.

3.4 Entities

3.4.1 User

Represents a user of the system.

• id: UUID, unique identifier.

• name: String, not null.

• email: String, unique.

• password hash: String, stores the hashed password.

• created at, updated at: Timestamps.

3.4.2 TimeEntry

Tracks user work sessions.

• id: UUID, unique identifier.

• user id: UUID, foreign key referencing User.

• start time, end time: Timestamps.

• description: Optional text description.

• project id: UUID, foreign key referencing Project.

3.4.3 Project

Represents a project that users can be assigned to.

• id: UUID, unique identifier.

• name: String, not null.

• description: Optional text description.

• created at, updated at: Timestamps.

• owner id: UUID, foreign key referencing User.

3.4.4 Role and Permission

Manages access control.

• Role Table: Defines roles.

• Permission Table: Lists permissions.

• RolePermission Table: Links roles and permissions.

• UserRole Table: Links users to roles.

8

4 System Design

4.1 Overview

The system design for the ActaTempus Time Tracking and Management System is rooted in principles
of Domain-Driven Design (DDD) and Clean Architecture. This ensures a modular, maintainable, and scalable
system, with clearly defined layers that simplify future enhancements while preserving the core logic.

4.2 Architectural Design

User ProjectProjectTask TimeEntry

User ProjectProjectTask TimeEntry

User ProjectProjectTask TimeEntry Auth

IDatabase

Config

...services implement

the api behaviour,

starting with the

request resulting in a

response

...Implementation of every

Repository Contract where

the businesslogic based on

domain knowledge should

be implemented

...dtos ensure that

json response are

generated correctly

and that no data

leakage occurs

...Implementation of every

DataSource Contract

...responsible for loading

the config file containing

the server config

...Implementation of external Interface of the application. In case of the backend it is a webserver

Figure 1: Backend Architecture Concept

The architecture displayed in figure 1 can be described as following:

• Domain Layer: Encapsulates the core business logic and entities such as User, TimeEntry, Project,
Role, and Permission.

• Application Layer: Contains use cases and services like UserService, TimeEntryService, and Role-
ManagementService, coordinating operations.

• Infrastructure Layer: Manages database interaction using Prisma adapters for PostgreSQL and pro-
vides additional abstractions for external systems.

• Interface Adapters Layer: Hosts server logic that mediate interactions between the backend, the client.

• Frontend App: Built with Next.js and React, utilizing fp-ts and RxJS to ensure a functional and
responsive user experience.

9

4.3 Module Design

4.3.1 User Management Module

• Description: Manages user registration, authentication, profile updates, and password recovery.

• Components:

– UserService: Implements business logic for user management.

– UserRepository: Interfaces with the UserDataSource for database access.

– UserDataSource: Provides database interaction for user data using Prisma.

4.3.2 Authentication Module

• Description: Handles user authentication and session management.

• Components:

– AuthService: Manages token generation, validation, and revocation.

– AuthRepository: Interfaces with the token storage system.

4.3.3 Time Entry Module

• Description: Tracks time entries, including start/stop actions and manual entry.

• Components:

– TimeEntryService: Implements logic for time tracking operations.

– TimeEntryRepository: Accesses TimeEntryDataSource for data persistence.

– TimeEntryDataSource: Interacts with the database to manage time entry records.

4.3.4 Project Management Module

• Description: Facilitates project creation and assignment.

• Components:

– ProjectService: Implements business logic for managing projects.

– ProjectRepository: Interfaces with the ProjectDataSource for database operations.

– ProjectDataSource: Handles direct database interactions for project-related data.

4.3.5 Role and Permission Module

• Description: Implements role-based access control (RBAC) for managing permissions.

• Components:

– RoleManagementService: Manages roles and their associated permissions.

– RoleRepository and PermissionRepository: Interface with their respective DataSources.

– RoleDataSource and PermissionDataSource: Provide database access for roles and permissions.

4.4 Data Flow

1. Frontend Request: The user interacts with the React-based frontend, which sends HTTP requests to
the backend.

2. Service Layer: Handles the requests, applying business logic and orchestrating operations.

3. Repository Layer: Acts as an intermediary between the service layer and the data sources, abstracting
persistence logic.

4. DataSource Layer: Directly interacts with PostgreSQL using Prisma for data manipulation.

5. Response: The processed result is returned to the service layer and forwarded to the frontend for display.

10

4.5 Database Design

The database schema supports all core entities and their relationships.

4.5.1 User Table

Stores user information.

• Columns:

– id: UUID, primary key.

– name: String, not null.

– email: String, unique.

– password hash: String.

– created at, updated at: Timestamps.

4.5.2 TimeEntry Table

Tracks user time entries.

• Columns:

– id: UUID, primary key.

– user id: UUID, foreign key referencing User.

– start time, end time: Timestamps.

– description: Text (optional).

– project id: UUID, foreign key referencing Project.

4.5.3 Project Table

Stores project data.

• Columns:

– id: UUID, primary key.

– name, description: Strings.

– owner id: UUID, foreign key referencing User.

4.5.4 Role and Permission Tables

Manage RBAC functionality.

• Role Table:

– id: UUID, primary key.

– name: String, unique.

• Permission Table:

– id: UUID, primary key.

– name: String, unique.

• RolePermission Table: Links roles and permissions.

11

5 Detailed Design for the Go Backend

5.1 Project Structure for DDD and Clean Architecture in Go

The application of Domain-Driven Design (DDD) and Clean Architecture in Go promotes a clear separation of
concerns, which facilitates maintainability and scalability. A proposed project structure is outlined below:

backend-go/

|-- cmd/ # Entry points of the application

| ‘-- your_app/

| ‘-- main.go # Main program

|-- internal/ # Non-exported code

| |-- domain/ # Domain layer

| | |-- entities/ # Domain models

| | |-- repositories/ # Repository interfaces

| | ‘-- services/ # Domain services

| |-- application/ # Application layer

| | |-- repositories/ # Implementaton of Repositories

| | ‘-- services/ # Implementation of API Endpoints

| | ‘-- dto/ # Data Transfer Objects

| |-- infrastructure/ # Infrastructure layer

| | |-- data/ # DataSources implementations

| | ‘-- config/ # Configuration management

| ‘-- interfaces/ # Interface layer

| ‘-- http/ # HTTP handlers

|-- pkg/ # Public packages

| ‘-- logger/ # Example of a reusable package

|-- go.mod # Module definition

‘-- go.sum # Dependencies

5.1.1 Explanation of the Structure

• cmd/: Contains the main entry point of the application.

• internal/domain/: Defines the core domain, including entities and domain services.

• internal/application/: Implements application logic and orchestrates domain objects.

• internal/infrastructure/: Contains technical details such as database access and external API integra-
tions.

• internal/interfaces/: Provides communication interfaces like HTTP controllers.

• pkg/: Public packages that can be reused by other projects.

5.1.2 Implementation Highlights

• Entities: Define ‘User‘, ‘WorkSession‘, ‘Project‘, and ‘Role‘ as Go structs.

• Repositories: Implement interfaces for data access in the ‘domain/repositories/‘ and actual implemen-
tations in ‘infrastructure/persistence/‘.

• Services: Create domain services in ‘domain/services/‘ to encapsulate business logic.

• HTTP Handlers: Define handlers in ‘interfaces/http/‘ to handle HTTP requests and map them to use
cases.

5.2 Best Practices and Principles

• Dependency Rule: Inner layers should not depend on outer layers.

• Interface Definition: Define repository interfaces in ‘domain/repositories/‘ and implement them in
‘infrastructure/persistence/‘.

• Testability: Write unit tests for each layer, ensuring high code coverage.

12

6 Detailed Design for the Dart Backend

6.1 Project Structure for DDD and Clean Architecture in Dart

The Dart backend, potentially built using the **Shelf** framework, can be organized similarly to Go for
consistency and maintainability:

backend-dart/

|-- bin/

| ‘-- main.dart # Entry point of the application

|-- lib/

| |-- domain/ # Domain layer

| | |-- entities/ # Domain models

| | |-- repositories/ # Repository interfaces

| | ‘-- services/ # Domain services

| |-- application/ # Application layer

| | |-- repositories/ # Implementaton of Repositories

| | ‘-- services/ # Implementation of API Endpoints

| | ‘-- dto/ # Data Transfer Objects

| |-- infrastructure/ # Infrastructure layer

| | |-- data/ # DataSource implementations

| | ‘-- config/ # Configuration management

| ‘-- interfaces/ # Interface layer

| ‘-- http/ # HTTP controllers

|-- pubspec.yaml # Package configuration

‘-- test/ # Tests

6.1.1 Explanation of the Structure

• bin/: Entry point of the application (‘main.dart‘).

• lib/domain/: Contains the core domain models and repository interfaces.

• lib/application/: Hosts use cases and orchestrates interactions between domain models.

• lib/infrastructure/: Implements repository interfaces and external service interactions.

• lib/interfaces/: Defines HTTP controllers and CLI interfaces.

• test/: Contains unit and integration tests for all modules.

6.1.2 Implementation Highlights

• Entities: Define classes like ‘User‘, ‘WorkSession‘, ‘Project‘, and ‘Role‘ in ‘domain/entities/‘.

• Repository Interfaces: Place in ‘domain/repositories/‘ and implement in ‘infrastructure/persistence/‘.

• Services: Implement business logic in ‘domain/services/‘.

• HTTP Controllers: Use the Shelf package to define routes and request handlers in ‘interfaces/http/‘.

6.2 Best Practices and Principles

• Dependency Injection: Ensure that dependencies are injected to keep layers decoupled.

• Testing: Write unit and integration tests to cover business logic and infrastructure components.

• Functional Programming Practices: Use ‘fpdart‘ for functional constructs to make the code more
predictable and easier to test.

13

7 API Endpoints

7.1 Overview

The API for the Time Tracking and Management System is designed using RESTful principles to provide
clear and efficient communication. The main entities covered include Users, Projects, Time Entries, Clients,
Tasks, and Notifications. This document outlines the key endpoints, ensuring a consistent, secure, and scalable
interface.

7.2 API Endpoints

7.2.1 1. Authentication and Authorization

• Register a New User

– Endpoint: POST /api/auth/register

– Request Body:

{

"name": "Max Mustermann",

"email": "max@example.com",

"password": "geheimespasswort"

}

– Response: 201 Created on success, 400 Bad Request on validation error.

• User Login

– Endpoint: POST /api/auth/login

– Request Body:

{

"email": "max@example.com",

"password": "geheimespasswort"

}

– Response: 200 OK with JWT token on success, 401 Unauthorized on failure.

• Logout User

– Endpoint: POST /api/auth/logout

– Response: 200 OK on success.

• Get Current User

– Endpoint: GET /api/auth/me

– Response: 200 OK with user details.

7.2.2 2. User Management

• Get All Users (Admin Only)

– Endpoint: GET /api/users

– Response: 200 OK with a list of users.

• Get Single User

– Endpoint: GET /api/users/{userId}
– Response: 200 OK with user details, 404 Not Found if user does not exist.

• Update User

– Endpoint: PUT /api/users/{userId}
– Response: 200 OK on success, 400 Bad Request on validation error.

14

• Delete User

– Endpoint: DELETE /api/users/{userId}
– Response: 200 OK on success, 404 Not Found if user does not exist.

7.2.3 3. Project Management

• Get All Projects

– Endpoint: GET /api/projects

– Response: 200 OK with a list of projects.

• Create New Project

– Endpoint: POST /api/projects

– Request Body:

{

"name": "New Project",

"clientId": "12345",

"description": "Project description"

}

– Response: 201 Created on success.

• Get Single Project

– Endpoint: GET /api/projects/{projectId}
– Response: 200 OK with project details.

• Update Project

– Endpoint: PUT /api/projects/{projectId}
– Response: 200 OK on success.

• Delete Project

– Endpoint: DELETE /api/projects/{projectId}
– Response: 200 OK on success.

7.2.4 4. Time Entry Management

• Get All Time Entries

– Endpoint: GET /api/time-entries

– Query Parameters: projectId, dateFrom, dateTo

– Response: 200 OK with a list of time entries.

• Create New Time Entry

– Endpoint: POST /api/time-entries

– Request Body:

{

"projectId": "12345",

"taskId": "67890",

"startTime": "2023-10-01T08:00:00Z",

"endTime": "2023-10-01T10:00:00Z",

"description": "Work session description"

}

– Response: 201 Created on success.

• Update Time Entry

15

– Endpoint: PUT /api/time-entries/{entryId}
– Response: 200 OK on success.

• Delete Time Entry

– Endpoint: DELETE /api/time-entries/{entryId}
– Response: 200 OK on success.

7.2.5 5. Client Management (Optional)

• Get All Clients

– Endpoint: GET /api/clients

– Response: 200 OK with a list of clients.

• Create New Client

– Endpoint: POST /api/clients

– Request Body:

{

"name": "Client Name",

"contactInfo": "Contact details"

}

– Response: 201 Created on success.

• Get Single Client

– Endpoint: GET /api/clients/{clientId}
– Response: 200 OK with client details.

7.2.6 6. Task Management (Optional)

• Get All Tasks

– Endpoint: GET /api/tasks

– Response: 200 OK with a list of tasks.

• Create New Task

– Endpoint: POST /api/tasks

– Request Body:

{

"name": "Task Name",

"description": "Task description"

}

– Response: 201 Created on success.

• Update Task

– Endpoint: PUT /api/tasks/{taskId}
– Response: 200 OK on success.

7.2.7 7. Reporting

• Generate Report

– Endpoint: GET /api/reports

– Query Parameters: userIds, dateFrom, dateTo, projectId

– Response: 200 OK with report data.

16

7.2.8 8. Notification Settings

• Update Notification Settings (Bitmask)

– Endpoint: PUT /api/notifications/settings

– Request Body:

{

"userId": "uuid",

"notificationSettings": 5 // Example bitmask

}

– Response: 200 OK on success.

• Get Notification Settings

– Endpoint: GET /api/notifications/settings/{userId}
– Response: 200 OK with the current bitmask settings.

7.3 Security Considerations

• **Authentication**: All protected endpoints require a valid JWT token.

• **Role-Based Access Control**: Specific endpoints may require roles such as ‘Admin‘ or ‘Manager‘.

• **HTTPS**: All API calls in production should be made over HTTPS to ensure data security.

7.4 Error Handling

• **Consistent Error Responses**:

{

"error": {

"code": "VALIDATION_ERROR",

"message": "Invalid input for ’email’.",

"details": {

"email": "This field cannot be empty."

}

}

}

17

	Introduction
	Purpose
	Intended Audience and Reading Suggestions
	Project Scope

	Requirements
	Functional Requirements
	Non-functional Requirements

	Technical Specification
	Overall Architecture
	Technology Stack
	Frontend
	Backend
	Database

	Key Specifications
	Frontend Design
	Backend Implementation

	Entities
	User
	TimeEntry
	Project
	Role and Permission

	System Design
	Overview
	Architectural Design
	Module Design
	User Management Module
	Authentication Module
	Time Entry Module
	Project Management Module
	Role and Permission Module

	Data Flow
	Database Design
	User Table
	TimeEntry Table
	Project Table
	Role and Permission Tables

	Detailed Design for the Go Backend
	Project Structure for DDD and Clean Architecture in Go
	Explanation of the Structure
	Implementation Highlights

	Best Practices and Principles

	Detailed Design for the Dart Backend
	Project Structure for DDD and Clean Architecture in Dart
	Explanation of the Structure
	Implementation Highlights

	Best Practices and Principles

	API Endpoints
	Overview
	API Endpoints
	1. Authentication and Authorization
	2. User Management
	3. Project Management
	4. Time Entry Management
	5. Client Management (Optional)
	6. Task Management (Optional)
	7. Reporting
	8. Notification Settings

	Security Considerations
	Error Handling

